
Project 1 : Not-A-Knot Cubic Spline Interpolation

Sujal Dave (200254193)

MAE,

North Carolina State University

Email: sdave@ncsu.edu

Abstract—Interpolation and data fitting are fundamental in
scientific computing in order to turn the data points into
meaningful functions that can later be used to deduce important
parameters and understand trends. Interpolations are used in
order to fit the discrete points exactly in a polynomial which can
then be differentiated or integrated. Data fitting of discrete points
is usually done by minimizing the error using Least-squares and
fitting one polynomial through the set of points. A piecewise cubic
polynomial interpolation approach is used in this manuscript.
The interpolated polynomial using this method is smooth, twice
differentiable and leads to a decreased error on increasing the
number of points, unlike the polynomial interpolation where the
errors and oscillations of the interpolant increases. The program
is written in FORTRAN computer language. The Runge function
is tested for a set of 5, 9, 17 and 33 equidistant points. The
logarithm of error is plotted against the logarithm of length of
interval which can be seen to decrease with increasing points
as expected. The program is later extended to a problem of
parametric cubic spline with repeated abscissae and ordinates
and a circle of uni radius is interpolated using 9 points.

I. INTRODUCTION

Data approximations are one of the most important tools

in scientific computing because of their wide use in post-

processing the results obtained from the simulations and make

the discrete data into meaningful curves. The data that is

obtained experimentally is almost always susceptible to the

conditions in which the experiment is being conducted. Hence,

a number of times the experiment is carried out and that

gives a lot of such data in discrete points which needs to be

processed in order to know what everything adds up to. Data

fitting is then used to minimize the error between the points

and estimate a linear or polynomial fit using Least-Squares so

that the data can now be either validated or used to further

process like, use differentiation or integration in order to look

at the hidden parameters. Interpolation is another technique

for post processing the discrete points where one estimates a

polynomial which pass through the points exactly so that the

curve can be used to find slope by differentiating or integrate to

find the area under the curve. There are a number of methods

with which one can estimate the polynomial passing through a

set of data points. The major ones are Polynomial Interpolation

and Piecewise Polynomial Interpolation.

A. Polynomial Interpolation

Assume that one needs to compute an interpolant of degree

n, that interpolates (n+1) data points {(xi , yi), i = 0,1...n} .

Let the interpolant be denoted as

v(x) =
∑n

i=0 ciBi (x) = coB0(x) + c1B1(x)...... + cnBn (x) (1)

where {ci } are the unknown coefficients or parameters de-

termined from the known data or function and {Bi } are the

predetermined basis functions. This will give us the (n+1)

conditions that the interpolating function needs to satisfy, in

the matrix form is:

*....
,

B0(x0) B1(x0) . Bn (x0)

B0(x1) B1(x1) . Bn (x1)

. . . .

B0(xn) B1(xn) . Bn (xn)

+////
-

*....
,

c0

c1

.

cn

+////
-

=

*....
,

y0

y1

.

yn

+////
-

(2)

For the Basis functions we have a number of choices based

upon the simplicity of the use and the ease of construction

and evaluation.

1) Monomial Interpolation: In this case, the Basis functions

are assumed as follows and the resultant matrix B obtained is

known as the Vandermonde matrix.

v(x) = p(x) = pn (x) =
∑n

i=o ci x
i
= c0 + c1x + ... + cn xn (3)

B =

*....
,

1 x0 . (x0)n

1 x1 . (x1)n

. . . .

1 xn . (xn)n

+////
-

(4)

The matrix B here, is very ill conditioned and hence for large

n, the estimated coefficients c are prone to inaccuracies and

thus suffer stability difficulties.

2) Lagrange Interpolation: Here, the Basis is selected in a

Lagrangian manner and the resulting B matrix is an identity

matrix

pn (x) =
∑n

i=0 yiLi (x)

Li (x) =
∏n

j=0, j,i

x − x j

xi − x j

(5)

B =

*....
,

1 0 . 0

0 1 . 0

. . . 0

0 0 . 1

+////
-

= I (6)

The Lagrangian interpolation works well in practice but for

very large n, it has issues with rounding error.

Figure 1 shows the polynomial interpolation for the Runge

function and how we can see oscillations for increased number

of points:

Fig. 1. Polynomial interpolation of Runge function with n=4,9 (left) and
n=19 (right)

B. Piecewise Polynomial Interpolation

In this approach, we divide the interval [a,b] in to subinter-

vals, a = t0 < t1 < < tr = b where, ti are the breakpoints

or knots. Then we construct the interpolant,

v(x) = si (x) , ti ≤ x ≤ ti+1 , i = 0,1... r − 1 (7)

where, si (x) is a polynomial of low degree m (piecewise cubic,

m=3).

As before, the polynomial v(x) must satisfy the interpolation

conditions and a global smoothness property as well.

II. DESCRIPTION OF METHODOLOGY

Here, we use the approach of the Piecewise Cubic Spline

Interpolation with the global smoothness property of a Not-

A-Knot condition.

Lets consider (n+1) points which form (n) sub-intervals over

the given set of discrete points. Each sub-interval estimates a

cubic polynomial passing through it which will be given by:

si (x) = ai + bi (x − xi) + ci (x − xi)
2

+di (x − xi)
3
, xi ≤ x ≤ xi+1

(8)

There are (4n) constants which will require (4n) set of

equations. The interpolant must pass through each and every

given data points. This requirement provides 2 equations per

interval hence (2n) equations in total. Cubic splines are twice

differentiable and hence that give more 2(n-1) equations.

The two remaining equations are obtained from the global

smoothness of not-a-knot condition.

A. Formulation of Cubic Spline

In order to interpolate a cubic spline in each sub-interval,

the following steps and formula need to used:

Taking the first and second derivatives for Equation 8, we

have

s
′

i
(x) = bi + 2ci (x − xi) + 3di (x − xi)

2 (9)

s
′′

i
(x) = 2ci + 6di (x − xi) (10)

Let h denote the length of each subinterval, then

hi = xi+1 − xi , i = 0,1,n − 1 (11)

The first set of conditions for each interval is:

si (x) = f (xi) → a(xi) = f (xi) (12)

si (xi+1) = f (xi+1) → ai + bihi + cih
2
i
+ dih

3
i

(13)

∴ bi + cihi + dihi = f [xi , xi+1] , i = 0,1..n − 2 (14)

where, f [xi , xi+1] is the Newton divided difference.

The first and the second derivative conditions give,

s
′

i
(xi+1) = s

′

i+1
(xi+1) → bi + 2cihi + 3dih

2
i
= bi+1 , i = 0,1...n − 2 (15)

s
′′

i
(xi+1) = s

′′

i+1
(xi+1) → ci + 6dihi = ci+1 , i = 0,1...n − 2 (16)

Hence, the coefficients bi and di can be written as:

bi = f [xi , xi+1] −
hi

3
(ci+1 + 2ci), i = 0,1, ...n − 1 (17)

di =
ci+1 − ci

3hi
(18)

Here, we can see that once we have all the ci coefficients

determined, we can find the rest with simple calculations as

above. This means the problem is now reduced to solving for

the coefficients cifrom the equations for i=0,1,..n-1

hi−1ci−1 + 2(hi−1 + hi)ci + hici = ri (19)

where,

ri = 3(f [xi , xi+1] − f [xi−1, xi]) (20)

B. Not-A-Knot Condition

In order to close this system of equations, we need two

more equations that we will get from the global smoothness

criteria.

The not-a-knot condition states that the third derivative at

the first two and the last two intervals are equal, which gives

us-

d0 = d1 and dn−1 = dn−2 (21)

Solving for c0 and cn , we obtain the following:

c0 =
(h1 + h0)c1 − h0c2

h1

(22)

cn =
(hn−1 + hn−2)cn−1 − hn−1cn−2

hn−2

(23)

Hence the first and last equation in (19) will be as follows :

(h1 + h0)(2h1 + h0)

h1

c1 +
(h1 − h0)(h1 + h0)

h1

c2 = r1 (24)

(h−n−2 + hn−1)(h−n−2 − hn−1)

hn−2

cn−2

+

(2hn−2 + hn−1)(hn−1 + hn−2)

hn−2

cn−1 = rn−1

(25)

Using the equations (24), (19) and (25), we can form a

tridiagonal solver to solve for the coefficients ci and then the

subsequent coefficients can be found out from the equations

which are given by (12), (17) and (18).

C. Interpolation Error

The interpolation error for the interpolated polynomial P(x)

is given by

e =
∫
Ii

(Pi (x) − f (x))dx (26)

In order to evaluate this integral, we make use of the Gauss

Quadrature scheme. Since, the estimated polynomial is cubic,

we can use 4 points to exactly determine the integral. The

Gauss point formula and the Gauss points and weights are as

listed in the Table 1.
∫ b

a
f (x)dx =

∑N
i=1

wi f (ξi) (27)

TABLE I
GAUSS POINTS AND WEIGHTS

Gauss Points (ξi) Weights (wi)

-0.8611363116 0.3478548451
-0.3399810436 0.6521451549
0.3399810436 0.6521451549
0.8611363116 0.3478548451

In the present study, the L2 norm of the error is calculated

and then the logarithm of the error norm is plotted against

the logarithm of length of the interval. Subsequently, using

least squares a linear fit is created to approximate the order of

accuracy from the slope of the line.

‖e‖2 =

√

∑# o f subintervals

i=1

∫
Ii

(Pi (x) − f (x))2dx (28)

log(‖e‖2) = c + α log(h) (29)

where, α gives the approximate order of accuracy for the

approach.

D. Parametric Cubic Spline

Parametric cubic splines are constructed in a very similar to

that of the cubic splines. Earlier, we estimated a single third

order polynomial on an interval, whereas here, we estimate

two third-order polynomials.

1) Approach: Since we have repeated values of abscis-

sae and ordinates (as in case of the circle), for a closed

curve(parametric) cubic spline, we introduce a third variable

which takes care of the repeated nature of the data. [1]

Lets parameterize the (x,y) coordinates with a variable, say,

t. Now, we represent the splines equations in terms of t, as

follows:

(t0, x0)(t1, x1)(t2, x2)......(tn , xn)

(t0, y0)(t1, y1)(t2, y2)......(tn , yn)
(30)

where, t0 < t1 < < tn is a partition of the interval which

is unique and not repeated and given by say,

ti =
i

n
, i = 0,1,n (31)

Then, the interpolation conditions are:

X (ti) = xi , Y (ti) = yi , i = 0,1,n

C = (X (ti),Y (ti) = yi)

(32)

where, C is the new parameterized curve. [2]

III. RESULTS

A. Runge Function

The program for the cubic splines was written in FORTRAN

and the plots were visualized in TecPlot.

The following plots show the Runge function using the not-

a-knot piecewise cubic polynomial interpolation.

Fig. 2. N=5

We can see that for the case of N=5 equidistant points, the

polynomial is almost as seen in the Figure 1. As we start

increasing the number of points, the polynomial in this case

shows a reduced error and the approximation is lot better than

the schemed showed in Figure 1. In all the graphs, the discrete

points chosen were equidistant.

The error for the different interval sizes were calculated and

are as presented in Table 2.

TABLE II
ERROR AT DIFFERENT INTERVALS

Interval Size (h) Error

0.5 0.194825
0.25 1.28065E-02
0.125 4.8498E-04

6.25E-02 4.4396E-05

In order to get the hidden details from the error values, we

can find the L2 norm for the error as discussed above and

after taking the logarithm for the same, we can plot it against

logarithm of the interval size.

Fig. 3. N=9

Fig. 4. N=17

Figure 6 shows the points along with the Linear fit which is

done using the Least Squares method.

The linear fit is obtained by solving the normal equations,

given by:

AT Ax = AT b (33)

Upon calculating the slope for the equation, from the formula

in equation (29), we arrive at

α = 3.6

In reality, the value of α should be equal to 4 because the not-

a-knot method is 4th order accurate. We get a slightly lesser

Fig. 5. N=33

Fig. 6. Log(error) vs Log(h)

number due to the round off errors, Gauss quadrature error

and the error arising from the methods of convergence used

for solving the linear system of equations.

B. Circle

Using the approach and equations of the parametric spline

as listed in the section above, the circle formed is shown in

Figure 7.

The circle is very smooth with very slight discontinuity at

the point (1,0) which is barely visible to the naked eye but this

discontinuity can be removed by taking two or more points

really close to the starting/ending point which will ensure a

proper polynomial fit even at the repeated points.

Fig. 7. Circle using Parametric Spline Interpolation

IV. CONCLUSION

From the current project for the course, the following

conclusions have been made:

1) The program developed for Not-A-Knot cubic spline

interpolation works accurately as seen from the results

above.

2) Unlike polynomial interpolants with the Runge function,

the cubic spline interpolant leads to an accurate repre-

sentation of the function.

3) With increase in number of equally spaced sub-intervals,

the cubic spline interpolant approaches the exact analyt-

ical function.

4) The linear fit for log(‖e‖2) vs log(h), (h=length of sub

interval) was expected to have a slope of 4.

However, the linear fit has a slope of 3.6. The devia-

tion is due to the Gauss quadrature error and the ill-

conditioning of the linear system of equations.

REFERENCES

[1] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The Theory of Splines and

Their Applications, and others, Ed. Elsevier.
[2] U. M. Ascher and C. Greif, First Course in Numerical Methods, and

others, Ed., 2011.

