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1. Abstract 

The projects aims at solving two cases for (i) internal flow in channel with bump and (ii) external flow around a cylinder, 

by writing a 2D incompressible potential solver using a linear finite element method on unstructured grids. The freestream 
velocity vector used the project is considered to be (1, 0). The mesh grid for each of the cases have been provided and the 

solver is written in FORTRAN. The post-processing graphs and contours have been plotted using TECPLOT360 software. 

The finite element solver is intended to augment the understanding of the finite element methods and to introduce the 
unstructured grid that can be used for numerically computing potential flows past arbitrary bodies. In order to enhance the 

knowledge about the convergence, a grid independence study is conducted to assess if the convergence can be achieved. 
 
 

2. Introduction 

A potential flow is enforced when the velocity field is described as the gradient of a scalar function, i.e. velocity potential. 

Since the curl of the gradient of a scalar is always zero, a potential flow is characterised by an irrotational velocity field. For 

a velocity potential 𝜙, the velocity in a potential flow is, 

 

𝒗 = −∇𝜙 

In case of an incompressible flow the velocity potential satisfies the Laplace equation. Since we know that for the 

incompressible flow, the divergence of the velocity is zero. 

 

∇. 𝒗 = 0 

−∇2𝜙 = 0 

where, ∇2 is the Laplace operator. 

 
The finite element method used for solving the potential equation in the project is one of the most common numerical 

technique used in solving problems across engineering. The basic structure of solving an equation by the finite element 

method involves characterizing the equation by a variational formulation, then discretizing the domain, followed by 

enforcing solution algorithms and finally post-processing procedures. The discretization is conducted by creation of finite 

element meshes and defining basis functions on the reference element.  

In this project, linear basis functions or Lagrangian functions will be used in order to solve the potential using the linear 

finite element method in the domain given. The governing equations for the problem in the project is as shown: 

−∇2𝜙 = 0           in Ω 

𝜕𝜙

𝜕𝑛
= 𝑔 = 𝑣𝑛 = 𝒗 . 𝒏 = 𝑣𝑖𝑛𝑖         on Γ 

Where, Ω is a bounded open domain occupied by fluid, Γ its boundary and n is the outward normal unit vector 

to the Γ. 
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3. Description of methodology 

3.1 Variational formulation and the weak form  

The governing equation for the potential flow equation that is the Laplacian of the scalar potential is formulated in a weak 

form by using an arbitrary function v, that satisfies the boundary equations of the problem, later, on integrating both sides 

of the equation and applying divergence theorem and tensor identities, we arrive at the weak form of the equation which is 

given as, 

∫ ∇ϕ. ∇v dΩ
 

Ω
=  ∫ 𝑔𝑣 𝑑Γ

 

Γ
            ∀𝑣 ∈ 𝑉 

Where, V = {v: v is a continuous function on Ω} 

 

3.2 Basis functions 

Next, in order to represent the elements in the linear form, we introduce a set of basis functions Bj ∈ Vh, then we can write 

the finite approximation as, for N being the total points in the grid, 

∑ ( ∫ ∇𝐵𝑖 . ∇𝐵𝑗𝑑Ω
 

Ωℎ

) 𝜙𝑖

𝑁

𝑖=1

=  ∫ 𝑔 𝐵𝑗  𝑑Γ 
 

Γ
, j = 1,2,3, … … , N 

In the matrix form,    𝐴𝜙 = 𝐵 

A = aij is a matrix of dimension NxN 

A (i,j) = aij =  ∫ ∇𝐵𝑖 . ∇𝐵𝑗𝑑Ω
 

Ωℎ
 : stiffness matrix. 

B (j) = bj = ∫ 𝑔 𝐵𝑗  𝑑Γ
 

Γ
 : load vector 

Since this is a linear method, introduce, Barycentric coordinates 𝜆𝑖, 

𝜆𝑖 =
𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖

𝐷
 , 𝑖 = 1,2,3 

Where,  

𝑎𝑖 = 𝑦𝑗 − 𝑦𝑘 

𝑏𝑖 = −(𝑥𝑗 − 𝑥𝑘) 

𝑐𝑖 = 𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑗 

𝐷 = 2∆123= 𝑐1 + 𝑐2 + 𝑐3 

∆123 is the area of the triangle formed by local points 1,2,3. 

Also, noting here, that, 

𝑑𝜆𝑖

𝑑𝑥
=

𝑎𝑖

𝐷
   𝑎𝑛𝑑 

𝑑𝜆𝑖

𝑑𝑦
=

𝑏𝑖

𝐷
 

For the method used in the project, 

𝐵𝑖 = 𝜆𝑖 

3.3 Local and Global matrices 
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The stiffness and the load matrices as described in the earlier section are written out for each element ( a ij and bj ) and then 

a global matrix ( A and B) are assembled. The basis functions over each element are evaluated and assembled into the local 

matrices which are then added according to the global indices into the global matrices. The local (element) matrices are, 

𝑎𝑖𝑗
(𝑒)

: elemental stiffness matrices for each element ‘e’ 

𝑏𝑖
(𝑓)

: elemental load vector for each boundary face ‘f’ 

Upon calculating these for every element in the domain, we assemble the local matrices into global matrices, 

𝐴 (𝐼, 𝐽) =  ∑ 𝑎𝑖𝑗
(𝑒)

𝑒

 

𝐵 (𝐽) =  ∑ 𝑏𝑖
(𝑓)

𝑓

 

Where, the capital letters correspond to the global variables and the small letters correspond to the local variables. Hence, 

now we obtain the equation, 

𝐴𝜙 = 𝐵 

 

3.4 Solving the linear system  𝐴𝜙 = 𝐵 

To solve the linear system obtained, a solver is written using the Gauss-Seidel method, the algorithm for which is as 

presented- 

Input: 𝐴, 𝐵, 𝜙 − 𝑜𝑙𝑑, 𝜙 − 𝑛𝑒𝑤, 𝑇𝑂𝐿 (𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒), 𝑁 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠), 𝑛 (𝑛𝑜𝑑𝑒𝑠) 

Step 1: Set 𝑘 = 1 

Step 2: while ( 𝑘 ≤ 𝑁 ), do steps 3 to 6 

 Step 3  for 𝑖 = 1,2,3 … . 𝑛 

  (𝜙 − 𝑛𝑒𝑤)𝑖 =
1

𝑎𝑖𝑖
[ − ∑ (𝐴𝑖𝑗 ∗ (𝜙 − 𝑛𝑒𝑤)𝑗)𝑖−1

𝑗=1 − ∑ (𝐴𝑖𝑗 ∗ (𝜙 − 𝑜𝑙𝑑)𝑗)𝑛
𝑗=𝑖+1 + 𝐵𝑖]  

 Step 4  If ‖(𝜙 − 𝑛𝑒𝑤) − (𝜙 − 𝑜𝑙𝑑)‖ < 𝑇𝑂𝐿, 𝑡ℎ𝑒𝑛 𝑆𝑇𝑂𝑃 

 Step 5 𝑘 = 𝑘 + 1 

 Step 6 Set 𝜙 − 𝑜𝑙𝑑 =  𝜙 − 𝑛𝑒𝑤 

Step 7 Output 𝜙 − 𝑛𝑒𝑤 

 

3.5 Post-processing 

On solving the linear system, we obtain the potential function 𝜙 at each point in the grid. As a first step we need to 

calculate the velocity potential at each element by the following equality, 

𝜙𝑒 = ∑ 𝜙𝑖𝐵𝑖(𝑥, 𝑦)

3

𝑖=1

= ∑ 𝜙𝑖𝜆𝑖(𝑥, 𝑦)

3

𝑖=1

 

Then, 

𝑉𝑥 =
𝜕𝜙

𝜕𝑥
=  ∑ 𝜙𝑖

𝜕𝜆𝑖

𝜕𝑥

3

𝑖=1
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𝑉𝑦 =
𝜕𝜙

𝜕𝑦
=  ∑ 𝜙𝑖

𝜕𝜆𝑖

𝜕𝑦

3

𝑖=1

 

We know, that the velocity is piecewise constant on each element. Hence, now calculating the velocity on each point in 

the domain we use the following formula, 

𝑉𝑝 =
∑ 𝑉𝑒𝑤𝑒𝑒∈𝑝

∑ 𝑤𝑒𝑒∈𝑝
 

Where, 𝑤𝑒 is the area weight function of the element ‘e’ 

4. Results 

Putting together the velocities that we have found out for each node, we find out the x- and y-components and from that the 

total velocity for the test cases. Tecplot360 is used to read the output file with the coordinates, velocity potential and the 

total velocity magnitude which is used to plot the contours of the quantities.  The following figures present the mesh, velocity 

potential, total velocity magnitude and the velocity vectors for the various test cases that were solved using the potential 

solver coded.  

The velocity distributions along the top and bottom surfaces of the bodies which are tested are also presented in the graphs. 

The velocities at the surface were extracted by writing a code snippet wherein the points on boundary face with a certain 

flag were identified and the coordinates and velocity at the point were fed into a new file. 

Subsequently, by applying the vector 𝐿2 Norm, the error function was found out. The exact solution for the potential equation 

in polar coordinates is given by, 

𝜙(𝑟, 𝜃) = 𝑈𝑟 (1 +
𝑅2

𝑟2
) 𝑐𝑜𝑠𝜃 

Transforming the polar coordinates to the Cartesian coordinates, we can rewrite the equation as, 

𝜙(𝑥, 𝑦) = 𝑈𝑥 (1 +
𝑅2

𝑥2 + 𝑦2
) 

Where, U is the x-component of the velocity and R is the radius of the cylinder. 

The following is the short code written for the calculation of the error in each grid refinement 

do i=1,npoin 

r=(coord(1,i)*coord(1,i))+(coord(2,i)*coord(2,i)) 

exact(i)=vx*coord(1,i)*(1+(0.25/(r))) 

diff=exact(i)-phinew(i) 

eror=eror+(diff*diff) 

end do 

eror=sqrt(eror)/npoin  
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Case 1: Internal flow in a channel with bump 

 

 
           (a) 

         
       (b)              (c) 

 

 
(d) 

Figure 1: (a) Mesh (b) Velocity potential contours (c) Velocity vectors and (d) Velocity contours 
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Case 2: External flow past a cylinder 

 

Coarse Mesh-  

 

         
            (a)          (b) 

 

 

        
            (c)                   (d) 

Figure 2: (a) Mesh (b) Velocity potential contours (c) Velocity contours and (d) Velocity vectors 

 

  



8 
 

 

Medium Mesh- 

 

          
          (a)                 (b) 

 

 

            
         (c)                       (d) 

Figure 3: (a) Mesh (b) Velocity potential contours (c) Velocity contours and (d) Velocity vectors 
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Fine Mesh- 

 

                 
   (a)        (b) 

 

 

          
        (c)                (d) 

Figure 4: (a) Mesh (b) Velocity potential contours (c) Velocity contours and (d) Velocity vectors 
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Very Fine Mesh- 

 

           
       (a)                (b) 

 

 

      
        (c)                (d) 

Figure 5: (a) Mesh (b) Velocity potential contours (c) Velocity contours and (d) Velocity vectors 
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Velocity distribution over the surface 

 

 
(a) 

                              
            (b)          (c) 

                                       
           (d)           (e) 

Figure 6: Velocity distributions on the surface of (a) channel with bnump (b) coarse mesh (c) medium mesh (d) fine mesh 

(e) very fine mesh 
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Mesh Type Calculated Error 

Coarse 5.2234875 x 10−3 

Medium 8.0532813 x 10−4 

Fine 1.5865992 x 10−4 

Very Fine 5.5334334 x 10−5 

Table 1: Error associated with the mesh provided 

 

 

5. Conclusions 

The tests on the various problem cases of internal and external flows using the potential linear finite element method solver 

were carried out successfully. The Gauss-Seidel converged according to the tolerance and the contours of velocity potential 

and total velocity were verified with previous results and are in good accordance. Hence, the aim of the project has been 

achieved which was to augment the understanding of finite element methods and an introduction to unstructured grid 

techniques. As evident from the data, as the mesh refinement is increasing, the error associated with the numerical analysis 

is also reducing drastically. Hence, we can see that the formal of convergence can be achieved.  


