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Problem 1: 2-D Taylor Green Problem 

 

1.1 - Introduction 

The problem describes the decay in time of two stationary counter-rotating vortices in a periodic 

domain. The problem has an exact closed form solution of the incompressible Navier–Stokes 

equations in the Cartesian coordinates.  

The exact solution in 2-D is given by: 

𝑢(𝑥, 𝑦) = − cos(𝑥) sin(𝑦) 𝑒−2𝜈𝑡 

𝑣(𝑥, 𝑦) = sin(𝑥) cos(𝑦) 𝑒−2𝜈𝑡 

𝑝(𝑥, 𝑦) = 𝑝0 −
1

4
(𝑐𝑜𝑠(2𝑥) + cos(2𝑦)) 𝑒−4𝜈𝑡 

𝑘(𝑡) =
1

4
𝑒−4𝜈𝑡  

 

1.2 Method of Solution 

The Taylor Green problem is the most rudimentary problem in solving the Incompressible Navier-

Stokes equation in a domain. The following are the steps taken in order to define the problem 

computationally and solve it with a good accuracy. 

1.2.1 Domain and Mesh definition 

A periodic domain is used to tap the transient counter rotating vortices. 

Length of domain in x-direction 2𝜋 

Length of domain in y-direction 2𝜋 

Number of cells in x-direction 100 

Number of cells in y-direction 100 

 

The finite volume method is used, and hence the properties are assumed to be concentrated at the cell 

centres. Definition of normal, surface areas are also made in the similar way along the edges. A 

structured square mesh is used in the domain. 

Nomenclature of the cell parameters in a typical cell of the domain is as shown: 



 

The following table represents the values which are computed as an approximation at the various 

points. 

 Nodes 

 Normals and Surface Areas 

 Cell centres, Velocities, Volume, Pressures, Non-

linear terms, Viscous terms 

 

1.2.2 Boundary conditions 

As the domain is periodic, the ghost cells on each side need to be initialized accordingly. Considering 

two additional rows and columns for the ghost cell, the boundary condition applied to the ghost cell is 

as shown;  

u(1,:)=u(nx+1,:); 
u(nx+2,:)=u(2,:); 
u(:,1)=u(:,ny+1); 
u(:,ny+2)=u(:,2); 

 

Here, the ghost cells exist as the 1st and (nx+1) row and 1st and (ny+1) column. 

The domain exists from [ 2 to nx+1 ] and [ 2 to ny+1 ] cells. 

 

1.2.3 Initialization 

Since the exact solution is provided, we incorporate 𝑡 = 0 and initialize the domain with the counter 

rotating vortices.  

 

 



Initial Condition: 

𝑢(𝑥, 𝑦) = − cos(𝑥) sin(𝑦) 

𝑣(𝑥, 𝑦) = sin(𝑥) cos(𝑦) 

The initialization of pressure is not really required because we can guess the pressure points to be zero 

for the SOR method and it would converge to the solution accordingly. 

 

1.2.4 Mahesh Algorithm 

The finite volume version of the fractional step method from the paper by Mahesh, Constantinescu 

and Moin (2014) is used. The method uses non-staggered, energy conserving formulation. The 

following are the brief steps used in incorporating the algorithm: 

Step 1: Ignore the pressure and use Adams-Bashforth discretization to get the predicted velocity fields 

Step 2: Find the pressure that gives us the divergence-free velocity field. 

Step 3: Put the pressure derivatives that we ignored in Step 1, back in. 

 

1.2.5 Input parameters  

𝜌 1 

Re  (
1

𝜈
 )  10;100;1000 

Relaxation factor (𝜔) 1.96 

Tolerance (SOR) 10−4 

∆𝑡 10−3 

 

The choice of the most efficient relaxation factor is done by referring the following graph; 

 



1.3 Results and Discussion 

The solution was modelled and code was written in MATLAB which produced the following results: 

                

           

          

             



       

   

The comparison of the plots obtained from the numerical simulation and the exact solution as 

provided have been presented and the legend bars on the right of each figure, show that the 

magnitudes obtained after time=1s are well in line with the exact solution that is obtained. The small 

time step taken has greatly influenced the accuracy of the results obtained.  

The Kinetic energy of the system was measured at each time step and the decay was plotted against 

time. For comparison the exact Kinetic energy drop is also plotted for reference. 

 



 

 

It was observed that as the time stepping was reduced, the graphs of the numerical and exact solution 

tried merging into one. The Kinetic energy graphs for Re=100 and 1000 seem linear but actually the 

graphs are exponentially decreasing ones. Here, since the energy dissipated is not too high in 5 

seconds, the graph is not able to show the correct curve. However, if we look at the Re=10 graph, we 

can clearly make out the nature of the decay of Kinetic energy is not linear. 

Here in this particular problem,  

𝑅𝑒 ∝  
1

𝜈
 

we could see that as the Reynolds number decreased, there was a greater dissipation of the kinetic 

energy of the system of vortices. 

 



Since the decay in Kinetic energy computed by the Mahesh algorithm and that provided by the exact 

solution go hand in hand for the time step considered, the code is written well and hence the Taylor-

Green problem is validated. 

 

Problem 2: Lid-driven cavity 

2.1 Introduction 

The problem is defined as, at time t=0, the lid of a cavity is given a constant velocity in one direction, 

here in x-direction i.e. u=constant. Due to this, there is a disturbance caused in the cavity which then 

due to the fixed wall conditions generates rotational circulatory flow in the cavity. 

The code, validated on the Taylor-Green problem above, can be modified by making some changes in 

order to approach the lid-driven cavity problem. 

The lid driven cavity is a classical problem in the fluid flow field and a lot of articles have been 

published regarding the different mesh sizes used, algorithms employed or the Reynolds number 

considered. For the validation of the problems here, paper by Ghia et al. (1982) will be referred.  

 

2.2 Method of Solution 

2.2.1 Domain and Mesh definition 

The cell definitions and the calculation of the normals, surface areas and other quantities remain 

unchanged from the last question. The domain however  is altered as follows; 

Length of domain in x-direction 1 

Length of domain in y-direction 1 

Number of cells in x-direction 128 

Number of cells in y-direction 128 

 

2.2.2 Boundary conditions 

The cavity is defined as having solid walls on the left, right and bottom sides i.e. no slip, and the 

pressure is conditioned using the Neumann boundary conditions.  

Here, the domain exists from [2 to nx+1] and [2 to ny+1] cells. 

The boundary conditions for the u, v velocity and pressure is as shown below, 

 
u(1,:)=-u(2,:); 
u(nx+2,:)=(2*lid_velocity)-u(nx+1,:); 
u(:,1)=-u(:,2); 
u(:,ny+2)=-u(:,ny+1); 

  
v(1,:)=-v(2,:); 
v(nx+2,:)=-v(nx+1,:); 
v(:,1)=-v(:,2); 
v(:,ny+2)=-v(:,ny+1); 

 
p(1,:)=p(2,:); 

    p(nx+2,:)=p(nx+1,:); 



      p(:,1)=p(:,2); 
      p(:,ny+2)=p(:,ny+1) 

 

2.2.3 Initialization 

For t<0, there is nothing going on in the system, hence all the velocities need to be initialized to zero. 

2.2.4 Convergence criteria 

The problem is that of an unsteady system where at t=0, the lid is given a certain velocity. This 

develops a circulatory flow in the domain but after one point the flow becomes steady. Hence, here, 

the fixed time steps used in the last problem can not be used because we don’t know when the system 

might attain the steady state. Hence we use the convergence criteria according to which, if the residual 

of the new velocity and old velocity are lesser than a certain tolerance, we assume that the steady state 

is reached. The convergence condition is as shown: 

criteria=0.0001; %criteria for convergence 
converge=0; 

. 

. 

. 
while converge==0 

.  %do Adams Bashforth 

. 

. 
converge=1; 
temp1=0; 
temp2=0; 

  
for i=2:nx+1 
    for j=2:ny+1 
        temp1=temp1+(unew(i,j)-uold(i,j))^2; 
        temp2=temp2+(vnew(i,j)-vold(i,j))^2; 
    end 
end 
temp1=sqrt(temp1); 
temp2=sqrt(temp2); 
if temp1<criteria && temp2<criteria 
    converge=converge*1; 
else 
    converge=converge*0; 
end 

 

 

2.2.5 Input parameters  

𝜌 1 

Re (
𝐿𝑖𝑑_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦∗𝐿

𝜈
)  100;400;1000 

Relaxation factor (𝜔) 1.96 

Tolerance (SOR) 10−4 

∆𝑡 5x10−4 

Convergence criteria 10−4 

Lid_velocity 1 

 



2.3 Results and discussion 

The results obtained by the simulation of the code in MATLAB are compared with the results of 

simulations performed in Ghia et al. (1982). The simulations have been carried out at three different 

Reynolds Number, 100, 400 and 1000. 

The streamlines obtained by simulation are compared with those obtained by Ghia et al. (1982) 

                       

 

                 



 

                     

 

From the above results we can see that using a grid of (128 x 128) elements and using the Adams 

Bashforth method takes us close to the result obtained by the spectral methods but the accuracy has to 

be compromised. For Re=100 we can see that the values at the geometric centre are matching to a 

good extent but for the higher Reynolds number the curves show a considerable error. This error may 

be due to the incorrect time stepping, compromising on the resolution of the grid in order to speed up 

the computational time or due to the inefficiency of the numerical method used in order to solve the 

question. Since, Adams-Bashforth is an explicit method, we see that the time steps we need to take are 

very small in order to produce a precise result. The main disadvantage of this is the increase in 

number of steps that we have to consider in order to solve the equation. Moreover, the implicit 



methods prove to be efficient as they allow a relatively larger time step without compromising the 

stability of the system.  

Other methods in order to get more accurate results can be increasing the resolution of the grid i.e 

using a 256x256 grid, decreasing the time-step further, using an implicit scheme or using an 

unstructured grid. 

Although the streamlines reveal a picture of how the solution should look when the solution reached a 

steady state, there are places which could be further taken care of.  
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